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Abstract

Recently it has been shown that pseudospin symmetry has its origins in

a relativistic symmetry of the Dirac Hamiltonian. Using this symmetry we

relate single - nucleon relativistic magnetic moments of states in a pseudospin

doublet to the relativistic magnetic dipole transitions between the states in the

doublet, and we relate single - nucleon relativistic Gamow - Teller transitions

within states in the doublet. We apply these relationships to the Gamow -

Teller transitions from 39Ca to its mirror nucleus 39K.
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I. INTRODUCTION

For nucleons moving in a relativistic mean field with scalar VS and vector potentials VV ,

an SU(2) symmetry exists for the case for which VS = −VV [1]. This symmetry manifests

itself in nuclei as a slightly broken symmetry [2–5] since |VS+VV
VS−VV | is small for realistic mean

fields [6–10], and, in fact, gives rise to what has been called “pseudospin symmetry”. The

original observations that led to the coining of the word “pseudospin symmetry” were quasi-

degeneracies in spherical shell model orbitals with non - relativistic quantum numbers (nr,

`, j = `+1/2) and (nr−1, `+2, j = `+3/2) where nr, `, and j are the single-nucleon radial,

orbital, and total angular momentum quantum numbers, respectively [11,12]. This doublet

structure is expressed in terms of a “pseudo” orbital angular momentum ˜̀ = ` + 1, the

average of the orbital angular momentum of the two states in doublet, and “pseudo” spin,

s̃ = 1/2. For example, (nrs1/2, (nr − 1)d3/2) will have ˜̀ = 1 , (nrp3/2, (nr − 1)f5/2) will have

˜̀ = 2, etc. These doublets are almost degenerate with respect to pseudospin, since j = ˜̀ ± s̃

for the two states in the doublet; examples are shown in Figure 1. Pseudospin “symmetry”

was shown to exist in deformed nuclei as well [13,14] and has been used to explain features

of deformed nuclei, including superdeformation [15] and identical bands [16,17]. However,

the origin of pseudospin symmetry remained a mystery and “no deeper understanding of

the origin of these (approximate) degeneracies” existed [18]. A few years ago it was shown

that relativistic mean field theories gave approximately the correct spin orbit splitting to

produce the pseudospin doublets [19]. Finally the source of pseudospin symmetry as a

broken symmetry of the Dirac Hamiltonian related to VS ≈ −VV was pointed out [2–5]. For

spherical nuclei, pseudo-orbital angular momentum ˜̀ is also conserved and physically is the

“orbital angular momentum” of the lower component of the Dirac wavefunction.

One consequence of this relativistic SU(2) pseudospin symmetry is that the spatial wave-

function for the lower component of the Dirac wavefunctions will be equal in shape and
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magnitude for the two states in the doublet [3–5]. For spherical nuclei, this means that

the radial wavefunctions for the lower components in the doublet will have the same num-

ber of nodes, so we label these states with pseudo-radial quantum number (i.e.; the radial

quantum number of the lower component (ñ = 0, 1, . . .)). Furthermore,the pseudo-orbital

angular momentum will be a conserved quantum number for spherical symmetric scalar and

vector potentials and so we label the states with the pseudo-orbital angular momentum ˜̀

[4]. Finally, the total angular momentum j (~j =
~̃
` +

~̃
1/2), and projection m, are conserved

as well. The Dirac wavefunction for the two states in the doublet are

Ψñ,˜̀,j=˜̀+1/2,m = (gñ−1,˜̀,j[Y˜̀+1χ]j=
˜̀+1/2

m , ifñ,˜̀,j [Y˜̀χ]j=
˜̀+1/2

m ),

Ψñ,˜̀,j=˜̀−1/2,m = (gñ,˜̀,j[Y˜̀−1χ](j=
˜̀−1/2)

m , ifñ,˜̀,j[Y˜̀χ](j=
˜̀−1/2)

m ), (1)

where g, f are the radial wave functions, Y ˜̀ are the spherical harmonics, χ is a two-component

Pauli spinor, and [. . .](j) means coupled to angular momentum j. We note that the upper

component of the j = ˜̀− 1/2 wavefunction has the same radial quantum number as the

lower component, whereas the upper component of the j = ˜̀ + 1/2 wavefunction has ra-

dial quantum number one unit less than the lower component. The normalization of the

wavefunction gives
∫ ∞

0
[g2
ñ′,˜̀,j + f2

ñ,˜̀,j
]r2dr = 1;

j = ˜̀+ 1/2, ñ′ = ñ− 1; j = ˜̀− 1/2, ñ′ = ñ. (2)

For a square well potential, the overall phase between the two amplitudes will be a minus

sign [2] so we expect that, in the symmetry limit for realistic potentials, fñ,˜̀,j=˜̀+1/2(r) =

−fñ,˜̀,j=˜̀−1/2(r) = fñ,˜̀(r). For the relativistic mean field approximation to relativistic La-

grangrians with realistic zero range interactions and to nuclear field theory with meson

exchanges it was indeed shown that, fñ,˜̀,j=˜̀+1/2(r) ≈ −fñ,˜̀,j=˜̀−1/2(r) [3,10].
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However, to date, the effect of pseudospin symmetry on the relativistic wavefunction

has not been tested empirically. Since the lower component of the Dirac wavefunction

is small [3,5,10] this effect will be difficult to detect except perhaps in certain forbidden

transitions. For example, single - nucleon magnetic dipole and Gamow-Teller transitions

between pseudospin doublets are forbidden non-relativistically (i.e., “` forbidden” [20,21])

because the orbital angular momenta of the two states differ by two units. However, they are

not forbidden relativistically. In this paper we shall use approximate pseudospin symmetry

in the wavefunction to derive relations between single-nucleon relativistic magnetic moments

and magnetic dipole transtions within a pseudospin doublet on the one hand, and between

single-nucleon relativistic Gamow-Teller transitions within a pseudospin doublet on the other

hand. These relationships provide a test for the influence of pseudospin symmetry on the

single - nucleon wavefunctions.

II. MAGNETIC MOMENTS AND TRANSITIONS

The relativistic magnetic dipole operator for a particle with charge e is given by [22,23],

µ̂i = −e
2
gρ (~α× ~r)i + µA,ρ σi, (3)

where ~α is the usual Dirac matrix, ~r is the three space vector, ρ = π for a proton and

ν for a neutron, gρ is the orbital gyromagnetic ratio, gπ = 1, gν = 0, and µA,ρ is the

anamolous magnetic moment, µA,π = 1.793µ0, µA,ν = −1.913µ0, where µ0 = eh̄
2Mc

is the

nuclear magneton. The magnetic moment is given in terms of the matrix element of this

operator with m = j,

µj,ρ = 〈Ψñ,˜̀,j,m=j,ρ|µ̂|Ψñ,˜̀,j,m=j,ρ〉, (4)

and the square root of the magnetic transition probability between two states in the doublet

is given in terms of the reduced matrix element of this operator,
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√
B(M1 : ñ, ˜̀, j ′ → ñ, ˜̀, j)ρ =

1

(2j ′ + 1)
〈Ψñ′ ,˜̀,j′,ρ||µ̂||Ψñ,˜̀,j,ρ〉 (5)

Using the Dirac wavefunction (1), this results in

j = ˜̀− 1/2

µj,ρ =
−e gρ (j + 1/2)

2(j + 1)

∫ ∞

0
gñ,˜̀,jfñ,˜̀,j,ρ r

3 dr + µA,ρ (1 − (2j + 1)

(j + 1)

∫ ∞

0
f2
ñ,˜̀,j,ρ

r2 dr) , (6)

j = ˜̀+ 1/2

µj,ρ =
e gρ(j + 1/2)

2(j + 1)

∫ ∞

0
gñ−1,˜̀,j,ρfñ,˜̀,j,ρ r

3 dr − µA,ρ
(j + 1)

(j − (2j + 1)
∫ ∞

0
f2
ñ,˜̀,j,ρ

r2 dr) ,

(7)

j ′ = ˜̀+ 1/2, j = ˜̀− 1/2

√
B(M1 : ñ, ˜̀, j ′ → ñ, ˜̀, j)ρ = −

√√√√(2j + 1)

(2j + 3)

√
B(M1 : ñ, ˜̀, j → ñ, ˜̀, j ′)ρ =

− 1

4

√√√√(2j + 1)

(j + 1)
[
e gρ

2

∫ ∞

0
[gñ−1,˜̀,j′,ρfñ,˜̀,j,ρ + gñ,˜̀,j,ρfñ,˜̀,j′ ,ρ] r

3 dr + 4µA,ρ

∫ ∞

0
fñ,˜̀,j′,ρfñ,˜̀,j,ρ r

2 dr ].

(8)

A. Non-relativistic Limit

The Dirac equation with speherically symmetric potentials reduces to two coupled one -

dimensional radial equations for the upper and lower components, (g, f) [2],

h̄ c[
d

dr
+

1 + κ

r
]gñ′ ,˜̀,j,ρ = [2Mc2 − E + VS − VV ] fñ,˜̀,j,ρ, (9)

h̄ c[
d

dr
+

1− κ
r

]fñ,˜̀,j,ρ = [E + VS + VV ] gñ′ ,˜̀,j,ρ, (10)

where

κ = −˜̀, j = ˜̀− 1/2; κ = ˜̀+ 1, j = ˜̀+ 1/2, (11)

M is the nucleon mass, and E is the binding energy. In order to determine
∫∞

0 gfr3 dr we

use (9, 10) to derive [22]:
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gñ′ ,˜̀,j′,ρfñ,˜̀,j,ρ =

h̄c

2Mc2 + 2VS
[gñ′ ,˜̀,j′,ρ

d

dr
gñ′ ,˜̀,j,ρ + fñ,˜̀,j′,ρ

d

dr
fñ,˜̀,j,ρ +

1 + κ

r
gñ′ ,˜̀,j′,ρgñ′ ,˜̀,j,ρ +

1 − κ
r

fñ,˜̀,j′,ρfñ,˜̀,j,ρ]

(12)

In the non-relativistic limit, the potentials are ignored with respect to the nucleon mass,

although VS
Mc2
≈ .48 in the interior of the nucleus. Also terms quadratic in f are ignored.

This gives

∫ ∞

0
r3 dr[gñ′ ,˜̀,j′,ρfñ,˜̀,j,ρ + gñ′ ,˜̀,j,ρfñ,˜̀,j′,ρ] =

h̄

2Mc
(κ+ κ′ − 1)

∫ ∞

0
r2 drgñ′ ,˜̀,j′,ρ gñ′ ,˜̀,j,ρ. (13)

For j ′ = j,
∫∞

0 r3 drgñ′ ,˜̀,j,ρ gñ′ ,˜̀,j,ρ =1 from the normalization condition (2). Therefore in

the non-relativistic limit, the magnetic moments become,

µj,ρ = (j + 1/2) gρ µ0 + µA,ρ; j = ˜̀− 1/2, (14)

µj,ρ =
j

(j + 1)
((j + 1/2) gρ µ0 − µA,ρ); j = ˜̀+ 1/2. (15)

The non-relativistic limits for the magnetic moments in (14,15) are equivalent to the Schmidt

values [24].

However, for j ′ 6= j, it follows from (11) that κ + κ′ − 1 = 0 and therefore,

B(M1 : ñ, ˜̀, j ′ → ñ, ˜̀, j)ρ = 0; j ′ 6= j, (16)

Thus the non-relativistic limit of the B(M1) is zero which is as it should be since the

transition is from ` to ` ± 2 as stated in the Introduction.

B. Pseudospin Symmetry

Instead of looking at the non-relativistic limit, we examine the pseudospin limit which

assumes that the spatial wave functions of the lower components of the doublet are equal

and opposite in sign,
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fñ,˜̀,j=˜̀+1/2,ρ(r) = −fñ,˜̀,j=˜̀−1/2,ρ(r) = fñ,˜̀,ρ(r). (17)

Inserting this relation into (6, 7, 8) we obtain,

j = ˜̀− 1/2

µj,ρ =
e gρ (j + 1/2)

2(j + 1)

∫ ∞

0
gñ,˜̀,j,ρfñ,˜̀,ρ r

3 dr + µA,ρ (1− (2j + 1)

(j + 1)

∫ ∞

0
f2
ñ,˜̀,ρ

r2 dr) , (18)

j = ˜̀+ 1/2

µj,ρ =
e gρ(j + 1/2)

2(j + 1)

∫ ∞

0
gñ−1,˜̀,j,ρfñ,˜̀,ρ r

3 dr − µA,ρ
(j + 1)

(j − (2j + 1)
∫ ∞

0
f2
ñ,˜̀,ρ

r2 dr) , (19)

j ′ = ˜̀+ 1/2, j = ˜̀− 1/2

√
B(M1 : ñ, ˜̀, j ′ → ñ, ˜̀, j)ρ = −

√√√√(2j + 1)

(2j + 3)

√
B(M1 : ñ, ˜̀, j → ñ, ˜̀, j ′)ρ =

− 1

4

√√√√(2j + 1)

(j + 1)
[
e gρ

2

∫ ∞

0
[−gñ−1,˜̀,j′,ρ + gñ,˜̀,j,ρ]fñ,˜̀,ρ] r

3 dr − 4µA,ρ

∫ ∞

0
f2
ñ,˜̀,ρ

r2 dr ]. (20)

For neutrons gν = 0, and hence we have one unkown quantity,
∫∞
0 f2

ñ,˜̀,ρ
r2 dr. Therefore,

if we know one magnetic quantity, we can predict two others,

√
B(M1 : ñ, ˜̀, j ′ → ñ, ˜̀, j)ν = −

√
j + 1

2j + 1
(µj,ν − µA,ν ), (21)

√
B(M1 : ñ, ˜̀, j ′ → ñ, ˜̀, j)ν =

j + 2

2j + 3

√
2j + 1

j + 1
(µj′ ,ν +

j + 1

j + 2
µA,ν). (22)

For protons there are three unkown integrals, and so we can only derive one relationship

between the three magnetic quantities,

√
B(M1 : ñ, ˜̀, j ′ → ñ, ˜̀, j)π =

((j + 2)(2j + 1)µj′ ,π − (2j + 3)(j + 1)µj,π + 4 (j + 1)2 µA,π)

2 (2j + 3)
√

(j + 1)(2j + 1)
;

j ′ = ˜̀+ 1/2, j = ˜̀− 1/2. (23)

If the magnetic moments are given by the Schmidt values as in (14, 15), then the magnetic

transitions in (21, 22, 23) will be identically zero, which is consistent with the non-relativistic

limit.
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The relativistic mean field overestimates the isoscalar magnetic moments of nuclei [23].

However, when the response of the spectator nucleons is included, the relativistic isoscalar

magnetic moments agree better with experiment [25]. The response of the spectator nucleons

do not significantly affect isovector magnetic moments since the dominant mesons in the

relativistic field theory are isoscalar. If we define the isoscalar and vector operators as

µj,S =
1

2
(µj,ν + µj,π);µj,V =

1

2
(µj,ν − µj,π);µA,S =

1

2
(µA,ν + µA,π);µA,V =

1

2
(µA,ν − µA,π);

√
B(M1 : ñ, ˜̀, j ′ → ñ, ˜̀, j)S =

1

2
(
√
B(M1 : ñ, ˜̀, j ′ → ñ, ˜̀, j)ν+

√
B(M1 : ñ, ˜̀, j ′ → ñ, ˜̀, j)π);

√
B(M1 : ñ, ˜̀, j ′ → ñ, ˜̀, j)V =

1

2
(
√
B(M1 : ñ, ˜̀, j ′ → ñ, ˜̀, j)ν −

√
B(M1 : ñ, ˜̀, j ′ → ñ, ˜̀, j)π),

(24)

then the relations are separated into relations among the isoscalar and isovector magnetic

properties:

√
B(M1 : ñ, ˜̀, j ′ → ñ, ˜̀, j)S/V =

((j + 2)(2j + 1)µj′ ,S/V − (2j + 3)(j + 1)µj,S/V + 4 (j + 1)2 µA,S/V )

2 (2j + 3)
√

(j + 1)(2j + 1)
;

j ′ = ˜̀+ 1/2, j = ˜̀− 1/2. (25)

III. GAMOW - TELLER TANSITIONS

The Gamow - Teller operator is given by

GT =
gA√

2
στ±, (26)

where gA is the axial vector coupling constant (= 1.2670 (35)) and τ± are the isospin raising

and lowering operator. Thus this operator is a pure isovector operator. Using the Dirac

wavefunction (1), this results in

j = ˜̀− 1/2
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√
B(GT : ñ, ˜̀, j, ρ→ ñ, ˜̀, j, ρ̄) =

√
(j + 1)

j
gA (1− (2j + 1)

(j + 1)

∫ ∞

0
fñ,˜̀,j,ρfñ,˜̀,j,ρ̄ r

2 dr) , (27)

j = ˜̀+ 1/2

√
B(GT : ñ, ˜̀, j, ρ→ ñ, ˜̀, j, ρ̄) = − gA√

j(j + 1)
(j − (2j + 1)

∫ ∞

0
fñ,˜̀,j,ρfñ,˜̀,j,ρ̄ r

2 dr) , (28)

j ′ = ˜̀+ 1/2, j = ˜̀− 1/2

√
B(GT : ñ, ˜̀, j ′, ρ→ ñ, ˜̀, j, ρ̄) = −

√√√√(2j + 1)

(2j + 3)

√
B(GT : ñ, ˜̀, j, ρ̄→ ñ, ˜̀, j ′, ρ) =

−
√

(2j + 1)

j + 1
gA

∫ ∞

0
fñ,˜̀,j′ ,ρfñ,˜̀,j,ρ̄ r

2 dr . (29)

where ρ̄ = π if ρ = ν and ρ̄ = ν if ρ = π.

We notice that

√
B(GT : ñ, ˜̀, j, ρ→ ñ, ˜̀, j, ρ̄) =

√
B(GT : ñ, ˜̀, j, ρ̄→ ñ, ˜̀, j, ρ), (30)

but, in general,

√
B(GT : ñ, ˜̀, j ′, ρ→ ñ, ˜̀, j, ρ̄) 6=

√
B(GT : ñ, ˜̀, j ′, ρ̄→ ñ, ˜̀, j, ρ), (31)

A. Non-Relativistic Limit of the Gamow - Teller Transitions

Since terms quadratic in f are ignored in the non- relatvistic limit, we get the usual

results,

√
B(GT : ñ, ˜̀, j, ρ→ ñ, ˜̀, j, ρ̄) =

√
(j + 1)

j
gA; j = ˜̀− 1/2, (32)

√
B(GT : ñ, ˜̀, j, ρ→ ñ, ˜̀, j, ρ̄) = −

√
j

(j + 1)
gA; j = ˜̀+ 1/2 (33)

√
B(GT : ñ, ˜̀, j ′, ρ→ ñ, ˜̀, j, ρ̄) = 0; j ′ 6= j (34)
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B. Pseudospin Symmetry

Using pseudospin symmetry, (17), there is only one unkown for the Gamow - Teller

transtions and hence each transition is related to the other,

j ′ = ˜̀+ 1/2, j = ˜̀− 1/2.

√
B(GT : ñ, ˜̀, j ′, ρ→ ñ, ˜̀, j, ρ̄) = −

√
j

2j + 1
(
√
B(GT : ñ, ˜̀, j, ρ→ ñ, ˜̀, j, ρ̄)−

√
j + 1

j
gA),

(35)

√
B(GT : ñ, ˜̀, j ′, ρ→ ñ, ˜̀, j, ρ̄) =

√
(j + 2)(2j + 1)

2j + 3
(
√
B(GT : ñ, ˜̀, j ′, ρ→ ñ, ˜̀, j ′, ρ̄) +

√
j + 1

j + 2
gA),

(36)

√
B(GT : ñ, ˜̀, j, ρ→ ñ, ˜̀, j, ρ̄) =

− (2j + 1)

(2j + 3)

√
j + 2

j
(
√
B(GT : ñ, ˜̀, j ′, ρ→ ñ, ˜̀, j ′, ρ̄)− 2

(2j + 1)

√
j + 1

j + 2
gA), (37)

√
B(GT : ñ, ˜̀, j ′, ρ→ ñ, ˜̀, j, ρ̄) =

√
B(GT : ñ, ˜̀, j ′, ρ̄→ ñ, ˜̀, j, ρ). (38)

This last relation, (38), also follows from isospin symmetry as well, but if pseudospin

symmetry is conserved than the relation holds even though isospin may be violated; i.e.,

fñ,˜̀,π 6= fñ,˜̀,ν .

IV. AN EXAMPLE: 39K, 39CA

The nuclei 39
19K20 and 39

20Ca19 are mirror nuclei. The ground state and first excited state

of 39
19K20 are interpreted as a 0d3/2 and 1s1/2 proton hole respectively, while the ground

state and first excited state of 39
20Ca19 are interpreted as a 0d3/2 and 1s1/2 neutron hole

respectively. These states are members of the ñ = 1, ˜̀ = 1 pseudospin doublet. The M1
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transitions between these two states in both of these nuclei have been measured, although

they are forbidden in a non-relativistic single-nucleon model, and are indeed small [26,20].

The magnetic moments of the ground states are known. However, the magnetic moments of

the excited states are not known so the magnetic relationships introduced in (25) can not

be tested at this time.

On the other hand, the Gamow - Teller transitions from the ground state of 39Ca to the

ground and first excited state of 39K are known as indicated in Figure 2, which is enough

information to test (36). For this example, j = 1/2, (36) beomes

√
B(GT : 1̃, 1̃, 3/2+, ν → 1̃, 1̃, 1/2+, π) =

√
5

4
(
√
B(GT : 1̃, 1̃, 3/2+, ν → 1̃, 1̃, 3/2+, π) +

√
0.6gA).

(39)

Of course only the B(GT ) is measured; the sign of the square root is unkown. How-

ever, we choose the negative sign,
√
B(GT : 1̃, 1̃, 3/2

+
, ν → 1̃, 1̃, 3/2

+
, π)exp = −0.647(10)

[26], because in the non-relativistic limit given in (33), the square root is negative, which

also agrees with shell model calculations [20]. Since we are dealing with a single - nu-

cleon model we can expect renormalization of the coupling constant gA due to omitted

shell model configurations just as in the non-relativistic shell model [27]. In Table 1 we

see that the quenching necessary to reproduce the experimental “` forbidden” transition
√
B(GT : 1̃, 1̃, 3/2+, ν → 1̃, 1̃, 1/2+, π)exp is consistent with the quenching needed in the non-

relativistic shell model to reproduce ` allowed Gamow - Teller transitions. In the non-

relativistic shell model an effective tensor term geff [Y2σ](1) is added to the Gamow-Teller

operator, where Y2 is the spherical harmonic of rank two and [. . .](1) means coupled to angu-

lar momentum rank unity. Using a calculated effective coupling constant geff which includes

core polarization, isobar excitations, meson exchange currents, and relativistic corrections, a

value of the “` forbidden” transition
√
B(GT : 1̃, 1̃, 3/2+, ν → 1̃, 1̃, 1/2+, π)NR = −0.036(18)

is calculated. This value agrees with the experimental value within the limits of experi-
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mental and theoretical uncertainty. However, the isoscalar and isovector magnetic dipole

transitions calculated between the same states and using the same model disagrees with the

experimental transitions by a factor of four to five [26]. A measurement of the magnetic

moments of the s1/2 excited states in 39K and 39Ca would allow the prediction of the for-

bidden magnetic dipole transitions via (25) which may be helpful in throwing light on this

dilemma.

We can now predict the 1/2+ → 1/2+ transition using (37). The results are tabulated in

Table 2; this transition is the largest within the doublet. Furthermore, the final transition,

which is also “` forbidden”, can be determined from (29) and (38):

√
B(GT : ñ, ˜̀, j = 1/2+, ν → ñ, ˜̀, j ′ = 3/2+, π) =

−
√

2
√
B(GT : ñ, ˜̀, j = 3/2+, ν → ñ, ˜̀, j ′ = 1/2+, π) = ∓0.034(1). (40)

This relationship does not depend on the effective gA but also follows from isospin symmetry

as well.

V. CONCLUSIONS

Recent investigations suggest that pseudospin symmetry appears to be only slightly bro-

ken particularly near the Fermi sea [2–4,10,9,5]. The empirical evidence for pseudospin sym-

metry has been in the small energy splittings between doublets. In this paper we analyzed

magnetic dipole properties and Gamow-Teller transitions under assumption that pseudospin

symmetry is conserved. Pseudospin conservation implies that the spatial wavefunctions of

the lower component of the Dirac single - nucleon wavefunction are equal and opposite in

sign for pseudospin doublets. Using this assumption, we derive, for spherical nuclei, a re-

lationship for the scalar (vector) magnetic dipole transition between the two states of the

doublet and the scalar (vector) magnetic moments of the two states in the doublet. Under

12



the same assumptions we derive relationships between any two Gamow-Teller transitions

from states in the doublet to states in the doublet. We applied the Gamow-Teller relation

to the “` forbidden” β - decay of 39Ca, and conclude that agreement occurs for a quenching

of the axial coupling constant comparable to that neccessary to fit ` allowed Gamow-Teller

transitions in the non-relativistic shell model [27,28]. We point out that a measurement of

the magnetic moments of the s1/2 excited states in 39K and 39Ca would allow the predic-

tion of the forbidden magnetic dipole transitions via (25) which may be helpful in throwing

light on an inconsistency posed by the non-relativistic shell model [20]. Furthermore we

predict the other two Gamow-Teller transitions from the 1s1/2, 1d3/2 states in 39Ca to their

isobaric analogues in 39K using pseudospin symmetry, thereby producing a test of the effect

of pseudospin symmetry on the relativistic single - nucleon wavefunctions.
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TABLES

TABLE I. Predicted “` forbidden” Gamow - Teller strength, 39Ca → 39K, for various values

of the effective axial coupling constant.

g̃A
√
B(GT : 1̃, 1̃, 3/2+, ν → 1̃, 1̃, 1/2+, π)

1.2670 (35) (FREE) 0.187 (6)

0.96 (4) Ref [27] 0.053 (17)

0.91 (2) Ref [28] 0.032 (10)

0.891 (FIT) 0.024 (6)

EXP Ref [20] ± 0.024 (1)

TABLE II. Predicted Gamow - Teller strength, 39Ca → 39K, for two values of the effective

effective axial coupling constant.

g̃A
√
B(GT : 1̃, 1̃, 1/2+, ν → 1̃, 1̃, 1/2+, π)

1.2670 (35) (FREE) 1.820 (7)

0.891 1.495 (7)
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FIGURES

FIG. 1. Examples of pseudospin doublets in the 208Pb region. nr is the radial quantum number

of the state with j = ` + 1/2 = ˜̀− 1/2, and is equivalent to ñ, ñ = nr, ` is the orbital angular

momentum, j the total angular momentum.

FIG. 2. Measured Gamow - Teller transitions between pseudospin doublets for 39Ca. Dashed

line is for “` forbidden” transition

.
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